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INTRODUCTION

: Studies!-® of the fatigue behavior of metastable austenitic steels have shown
interesting differences between the behavior of high-strength TRIP steels’ and
that of lower strength metastable austenites, while identifying a marked contrast
between the influence of the deformation-induced martensitic transformation under
strain-control versus stress-control conditions. Fatigue crack propagation (FCP)
studies (controlled AK) have indicated that the deformation-induced transformation
retards crack propagation in the lower strength austenites, particularly at low
4K,! and also exerts a beneficial influence in high-strength TRIP steels, though
to a much lesser extent.? In smooth bar fatigue tests on lower strength austen- |
ites, the transformation was found to reduce fatigue life under conditions of |
controlled plastic strain amplitude.3 Under controlled total strain amplitude,
the transformation was found to be detrimental to low cycle fatigue life, but it
was indicated that a small amount of transformation may be beneficial at high
cycles.* Similarly, the low cycle fatigue properties of high-strength TRIP steels
were found to be degraded by the deformation-induced transformation under con-
trolled total strain amplitude conditions.® Under stress control, however, the
fatigue life of the lower strength metastable austenites is found to be greatly
enhanced by the transformation; for smooth bar tests with a stress ratio of R = O,
fatigue limits in excess of the yield strength have been reported.® This study
was undertaken to extend the stress-control fatigue tests to the high-strength
TRIP steels and determine whether the beneficial effect of the deformation-induced
transformation persists to the high strength levels. In addition, fatigue data
generated under stress-control conditions may provide a more useful design crite-
rion for many applications.

MATERIALS AND PROCEDURE

Both air and vacuum melts were prepared of a TRIP steel of nominal composi-
tion: Fe-9Cr-8Ni-4Mo-2Mn-2Si-0.3C. Ingots were homogenized at 2300 F (1530 K)
for 6 hours, press forged to 3-3/8 in. (8.58 cm) diameter at 2100 F (1420 K), and
machined to 3-1/8 in, (7.93 cm) diameter billets, The billets were extruded to
1-1/4 in. (3.18 cm) diameter at 2100 F (1420 K), solution treated at 2250 F
(1510 K) for 1 hour and water quenched. The solution-treated austenitic billets
were then strengthened by warm extrusion to reductions of area of 40%, 60%, or

1. PINEAU, A. G., and PELLOUX, R. M. Influence of Strain-Induced Martensitic Transformations on Fatigue Crack Growth Rates
in Stainless Steels. Met. Trans., v. 5, no. 5, 1974, p. 1103-1112.

2. CHANANI, G. R., ANTOLOVICH, S. D., and GERBERICH, W. W. Fatigue Crack Propagation in TRIP Steels. Met. Trans., v. 3,
no. 9, 1972, p. 2661-2672.

3. BAUDRY, G, and PINEAU, A. G. Influence of Strain-Induced Martensitic Transformation on the Low-Cycle Fatigue Behavior of
a Stainless Steel. Materials Science and Engineering, v. 28, no. 2, 1977, p. 229-242.

4. HENNESSY, D., STECKEL, G., and ALTSTETTER, C. Phase Transformation of Stainless Steel During Fatigue. Met. Trans. A.,

| v. 7A, no. 3, 1976, p. 415424,

| 5. CHANANI, G. R., and ANTOLOVICH, S. D. Low Cycle Fatigue of a High Strength Metastable Austenitic Steel. Met. Trans.,

| v. 5, no. 1, 1974, p. 217-229.

6. LUTHER, R. G., and WILLIAMS, T. R. G. The Influence of Phase Transformation in Stainless Steel During Static and Fatigue
Loading. Metal Science, v. 11, no. 6, June 1977, p. 219-224.

7. ZACKAY, V. F,, PARKER, E. R., FAHR, D., and BUSCH, R. The Enhancement of Ductility in High-Strength Steels. Trans.
ASM, v. 60, no. 1, 1967, p. 252-259.
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80% in the temperature range 400 to 850 F (480 to 730 K). Melt compositions and
further processing details are given in References 8 and 9,

Preliminary room-temperature tension tests revealed that the as-extruded
material was too stable with respect to martensitic transformation during testing,
resulting in lower than expected values of uniform elongation. A tempering treat-
ment designed to alter the austenite matrix composition through carbide precipita-
tion was found to restore the correct austenite stability for optimum room-
temperature tensile properties, A one-hour temper at 1100 F (870 K) produced a
markedly increased uniform elongation along with a higher ultimate tensile strength
and a slightly improved reduction of area. The overall tensile properties of the
extruded and tempered material were superior to those of warm-rolled material;
the tensile results are discussed in detail in Reference 9 and summarized in Table
1. In the current study both the as-extruded and the tempered materials were
examined to compare materials of differing stability, thus allowing an assessment
of the influence of the deformation-induced transformation.

Load-controlled uniaxial high-cycle fatigue tests were conducted at room
temperature on an SF-10U Satec fatigue machine at a frequency of 30 Hz and an R
(9min/%max) ratio of 0.1, Cylindrical smooth fatigue specimens having a minimum
diameter of 0.200 in. (0.508 cm) at the center of a slightly tapered gage section
were used. The specimen threads were grit blasted to eliminate thread fatigue
failures during testing.

RESULTS AND DISCUSSION

Figure 1 shows the S-N curves (maximum stress versus number of cycles to
failure) for the materials extruded to reductions of 40, 60, and 80% and the tem-
pered materials. Both vacuum and air-melted materials were tested in the as-
extruded condition, while only vacuum-melted material was tested in the tempered

Table 1. TENSILE PROPERTIES OF EXTRUDED TRIP STEEL
(Reference 9)

Reduction 0.2% Y.S. U.T.S. Elon.*
of Area, ¥ Condition ksi MN/m2 ksi MN/m? ¥
40 As-Extruded 145 1,000 159 1,100 13
Temperedt 136 938 199 1,370 4
60 As-Extruded 211 1,450 212 1,460 37
Tempered* 207 1,430 228 1,570 40
80 As-Extruded 244 1,680 261 1,800 12

Tempered?t 258 1,780 271 1,850 44

*Elongation obtained from 1-inch (2.54 cm) gage marks
on specimen (length/diameter = 5)
tTemper Treatment: 1 hour at 1100 F (870 X)

8. GAGNE, R. A, AZRIN, M., and DOUGLAS, J. R. Warm Extrusion of TRIP Steels. Army Materials and Mechanics Research
Center, AMMRC TR 76-2, January 1976 (AD A022710).

9. AZRIN, M., OLSON, G. B., and GAGNE, R. A. Austenite Stability and Tensile Properties of Warm-Extruded TRIP Steels in
Proceedings Fourth North American Metalworking Research Conference, T. Altan, ed., Battelle Columbus Laboratories, Ohio,
1976, p. 25-28.




L : s e T T -
L R0l
Temgered, V. i
e @ Tempe: acuum Me ian
X Extruded, Vacuum Melt
b
Tsngered + Extruded, Air Melt T
Zwm
2 L = 120
Wb o R
+ H 4
Extruded » < 1000
0~
1 g
e [ od P
m —
- 80
. a. 40% RA
100 1 1 1 1
Wt w0 10 1.4

Cycles to Failure

1
Cycles to Failure

F R 01 =1 1600

~ 160

i :

2 :
E / A
<180 ; 7 + t
g™ S //> ¥
il X S EXTRUDED P 1
/ + x -
1601 : */ x)_o-
o < /-./\ Gl
L) o
c. 80% RA i i ‘
120 nanull L s i 800
: o i N T o ot
Cycles to Failure

Figure 1. S-N curves of extruded TRIP steel. R=0.1, arrows indicate runout.




condition. The data for the as-extruded materials in Figures la and 1b indicate
no significant difference between vacuum and air-melted materials. However, there
is clearly a significant difference between the S-N curves of the as-extruded and
the tempered materials. In line with the increased ultimate tensile strength, the
less stable tempered material has significantly higher fatigue strength, particu-
larly at low cycles. The data of Figure 1b for the 60% extruded material indi-
cates that tempering improves the fatigue strength even at 107 cycles. For the
80% extruded material represented in Figure lc, the results for the as-extruded
material show a large amount of scatter. Tempering greatly reduced the scatter
and improved the fatigue strength over the entire life range examined.

While most of the observed improvement in fatigue strength after tempering
is likely due to the work hardening associated with the increased amount of
deformation-induced martensitic transformation (higher U.T.S.), reduction in
scatter observed for the 80% extruded material may also be due in part to relief
of residual stress during tempering. Extrusion can lead to an undesirable
residual stress distribution.}® This may also account for an observed slight
improvement in reduction of area in the tension tests after tempering.® Some of
the improvement in fatigue strength at high cycles, where fatigue crack initiation
becomes increasingly important, may be related to the heterogeneous nature of the
deformation-induced transformation on a very local scale. The same concentrated
dislocation arrays expected to initiate fatigue cracks (e.g., persistent slip
bands) are likely sources for the dislocation configurations believed responsible
for martensitic nucleation,!!

Having found evidence for a beneficial effect of the deformation-induced
martensitic transformation on the fatigue strength of TRIP steels, it is of
interest to compare the properties obtained with those of other steels. Figure 2
shows the measured fatigue strength at 107 cycles of the extruded and tempered
TRIP steel as a function of ultimate tensile strength, and includes available
data for other steels tested under the same R = 0.1 conditions. Data are pre-
sented for both conventionally processed!? and ESR (electroslag remelt) processed13
4340 steels tempered to different strength levels, including conventionally pro-
cessed 300M (silicon-modified 4340),!2 and for HP 9-4 nickel-cobalt alloy steels
of two carbon contents.!* The overall trend of the data is in agreement with the
observed behavior under the more common R = -1.0 condition that the fatigue
strength increases proportionately with tensile strength at low strength levels,
but then levels off at high tensile strengths.!® This flattening has been attrib-
uted to increased susceptibility to corrosive environmental interaction!® as well
as greater sensitivity to surface condition as a result of the greater notch
sensitivity of high-strength materials.!> The TRIP steel data indicate that the

10. MIURA, S., SAEKIL, Y., and MATUSHITA, T. Residual Stresses in Hydrostatically Extruded Carbon Steel Rods. Metals and
Materials, v. 7, no. 7, 1973, p. 441447,

11. OLSON, G. B., and COHEN, M. A General Mechanism of Martensitic Nucleation: Part I. General Concepts and the FCC-HCP
Transformation. Met. Trans. A., v. 7TA, no. 12, 1976, p. 1897-1904.

12. Metallic Materials and Elements for Aerospace Vehicle Structures, MIL-HDBK-5B, Chapter 2, August 31, 1973.

13. HICKEY, C. E., Jr. Mechanical Property Survey of Electroslag Remelt Processed Steels. Army Materials and Mechanics Research
Center, AMMRC MS 74-4, March 1974,

14. The 9Ni-4Co Steels, DMIC Report 220, October 1, 1966 (AD 801977).

15. DIETER, G. E. Mechanical Metallurgy. McGraw-Hill Book Company, New York, 1961.

16. LEE, H. H., and UHLIG, H. H. Corrosion Fatigue of Type 4140 High Strength Steel. Met. Trans., v. 3, no. 9, 1972, p. 2949-2957.
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Figure 2. Fatigue strength at 107 cycles {R=0.1) versus ultimate tensile strength for high-strength
steels. Tempered TRIP steel results are compared with available data for conventionally processed
4340 and 300M steels (Ref. 12), ESR processed 4340 (Ref. 13), and HP 9-4 steels (Ref. 14).

flattening is delayed to higher strengths, allowing an unusually high fatigue
strength of 180 ksi (1240 MPa) to be obtained. While TRIP steels show moderate
resistance to stress corrosion cracking (Kiscg = 34 ksivin. or 37 MPavm for 70%
warm-rolled material),* it is difficult to predict their resistance to corrosion
fatigue. The high relative fatigue strength is most likely associated with low
notch sensitivity as a result of the toughening effect of transformation
plasticity.l7,18 Notched tension tests on the same material studied in this
investigation revealed notch strength ratios (notch tensile strength/ultimate
tensile strength) greater than unity even at the highest strength level.t

It is interesting to note that the 40% extruded material, in addition to
showing the least attractive relative fatigue properties as represented by Figure
2, showed the smallest increase of fatigue strength after tempering despite a
greater increase in ultimate tensile strength. Some fatigue tests of the 60% and
80% extruded materials in both the as-extruded and tempered conditions were con-
ducted on a 10,000-1b (4500-kg) MTS closed test system, allowing examination of
undamaged fracture surfaces in the scanning electron microscope after testing.
Although there was some evidence of crack initiation at alumina inclusions, the

*W. F, Czysklis, AMMRC, personal communication, 1977.

1G. B. Olson, R. A. Gagne, M. Azrin, AMMRC, unpublished data, 1976.

17. GERBERICH, W. W., HEMMINGS, P. L., ZACKAY, V. F., and PARKER, E. R. Interactions Between Crack Growth and Strain-
Induced Transformation in Fracture 1969: Proceedings of the Second International Conference on Fracture, Brighton, April 1969,
P. L. Pratt, ed., London, Chapman and Hall Ltd., London, 1969, p. 288-305.

18. ANTOLOVICH, S. D., and SINGH, B. On the Toughness Increment Associated with the Austenite to Martensite Phase Transformation
in TRIP Steels. Met. Trans., v. 2, no. 5, 1971, p. 2135-2141,
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surfaces indicated a large component of intergranular fracture which was most
pronounced in the tempered material, particularly in the region of final fracture.
The intergranular cracking is likely associated with the strong tendency for grain
boundary carbide precipitation in austenites of such high chromium and carbon
content. The monotonic tension tests as well showed an intergranular fracture
mode together with many surface microcracks which were most severe in the 40%
extruded material, apparently due to the greater mean grain boundary length normal
to the tensile axis. Hence, the poorer fatigue properties of the 40% extruded
material may be due to an influence of grain shape on intergranular cracking.

This warrants caution in the use of TRIP steels warm-worked to low reductions.

CONCLUSIONS

Comparison of the S-N curves of the as-extruded material with those of the
less stable tempered material indicates that the deformation-induced martensitic
transformation increases the fatigue strength of TRIP steels under stress-control
conditions, in accordance with observations on lower strength metastable austen-
ites. The proportionality of fatigue strength to ultimate tensile strength is
maintained to higher strength levels allowing the achievement of a fatigue
strength at 107 cycles (for R = 0.1) of 180 ksi (1240 MPa).
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